GROWTH RATE OF BRAID MONOIDS $\mathbb{M B}_{n+1}, n \leq 6$

Zaffar Iqbal ${ }^{1, *}$, A. R. Nizami 2, Usman Ali ${ }^{3}$, Sadia Noureen ${ }^{4}$
${ }^{1, *}$ Department of Mathematics, University of Gujrat, Pakistan
${ }^{2}$ Division of science and technology, University of education, Township Lahore, Pakistan
${ }^{3}$ Centre for advanced studies in pure and applied Math. BZU Multan, Pakistan
${ }^{4}$ Department of Mathematics, University of Gujrat, Gujrat, Pakistan zaffar.iqbal@uog.edu.pk, arnizami@ue.edu.pk, usman76swat@gmail.com, sadia.tauseef@uog.edu.pk ABSTRACT: In [3] we proved that the growth rate of all the spherical Artin monoids is less than 4. In [11] we gave an algorithm to find the Hilbert series of the braid monoids $\mathbf{M B}_{n+1}$ and found the Hilbert series and the growth rate of $\mathbf{M B}_{3}$ and $\mathbf{M B}_{4}$, in particular. In [12] we gave the Hilbert series and the growth rates of $\mathbf{M B}_{5}$ and $\mathbf{M B}_{6}$. In this paper we compute the Hilbert series and the growth rate of $\mathbf{M B}_{7}$.

Key words: irreducible words, Hilbert series, Growth rate.
AMS Subject Classification 2000: 20F36 (primary), 20M05, 20F10 (secondary).

1.INTRODUCTION

The braid group \mathbf{B}_{n+1} admits the following classical presentation given by Artin: [2]
$\mathbf{B}_{n+1}=\left\langle x_{1}, x_{2}, \ldots, x_{n} \begin{array}{l}x_{i} x_{j}=x_{j} x_{i} \text { if }|i-j| \geq 2 \\ x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1} x_{i} \text { if } 1 \leq i \leq n-1\end{array}\right)$. Elements of \mathbf{B}_{n+1} are words expressed in the generators $x_{1}, x_{2}, \ldots, x_{n}$ and their inverses. The braid monoid $\mathbf{M B}_{n+1}$ has the similar presentation

[9] proved that the map $\psi: \mathbf{M B}_{n+1} \rightarrow \mathbf{B}_{n+1}$ given by $\psi\left(y_{i}\right)=x_{i}$ is injective. The elements of $\mathbf{M B} \mathbf{B}_{n+1}$ are called positive braids.
In 1972, P. Deligne [8] proved that the Hilbert series (will be defined later) of all the Artin monoids are rational functions.
In 1992, P. Xu [13] found the Hilbert series of the braid monoids $\mathbf{M B}_{3}$ and $\mathbf{M B}_{4}$ and she also proved that the Hilbert series of $\mathbf{M B} \mathbf{B}_{n+1}$ is a rational function. She developed a linear system for $\mathbf{M B}_{n+1}$ of size $n!$ and she succeeded to reduce it to $2^{n-1}+2^{\left[\frac{n-1}{2}\right]}-2$ equations.
In 2003, Bokut [bok] gave the non-commutative Gröbner bases or complete presentation of the braid monoid $\mathbf{M B}_{n+1}$ (with the length-lexicographic order induced by $x_{1}<\cdots<x_{n}$) and proved:
Theorem 1 [5]. A complete presentation (Gröbner bases) of $\mathbf{M B}_{n+1}$ consists of the following relations:
(i) $x_{s} x_{k}=x_{k} x_{s}, s-k \geq 2$,
(ii) $\quad x_{i+1} x_{i} \alpha(i-1,1) x_{i+1} x_{i} \ldots x_{j}=x_{i} x_{i+1} x_{i} \alpha(i-$ 1,1) $x_{i} \ldots x_{j} \sum \beta(i, j), 1 \leq i \leq n-1,1 \leq j \leq n+1$
(For notations see Section sec 2.) In [11] we slightly modified the complete presentation of $\mathbf{M B}_{n+1}$ (given by Bokut) to make it reduced (i.e., all the relations do not contain reducible words) for the purpose of computation of Hilbert series. Using the reduced complete presentation (non-commutative Gröbner bases) of $\mathbf{M B}_{n+1}$ we found another system of equations to compute the Hilbert series. We constructed a linear system of equations for reducible as well as for irreducible words. The size of the system is $n^{2}+2 n-3$ which is much smaller than the size $2^{n-1}+2^{\left[\frac{n-1}{2}\right]}-2$ of Xu's system for $n \geq 7$. Using this system we gave an algorithm to compute inductively the Hilbert series of $\mathbf{M B}_{n+1}$.

Definition 1 [1]. Let G be a finitely generated group and S be a finite set of generators of G. The word length $l_{S}(g)$ of an element $g \in G$ is the smallest integer n for which there exist $s_{1}, \ldots, s_{n} \in S \cup S^{-1}$ such that $g=S_{1} \cdots S_{n}$.
Definition 2 [1]. Let G be a finitely generated group and S be a finite set of generators of G. The growth function of the pair (G, S) associates to an integer $k \geq 0$ the number $a(k)$ of elements $g \in G$ such that $l_{S}(g)=k$ and the corresponding spherical growth series or the Hilbert series is given by $P_{G}(t)=\sum_{k=0}^{\infty} a(k) t^{k}$.
For a sequence $\left\{s_{k}\right\}_{k \geq 1}$ of positive numbers, we define the growth rate by:
Definition 3. We say that $\left\{s_{k}\right\}_{k \geq 1}$ has a growth rate $\gamma(\gamma$ is a positive real number) if
$\varlimsup_{k} \exp \left(\frac{\log s_{k}}{k}\right)=\gamma$.
In [4] we have proved that the growth rate of all the spherical

Artin monoids is less than 4 . In [11] we showed that the growth functions are exponential and the growth rates are (approximately) 1.618 and 2.0868 respectively for the monoids $\mathbf{M B}_{3}$ and $\mathbf{M B}_{4}$.

2. Some Necessary Notions

All the following notions are in [1,4-7] under different names: complete presentation, Gröbner bases, presentation with solvable ambiguities, rewriting system and so on. In the free monoid generated by x_{1}, \ldots, x_{n} the total order on the set of generators given by $x_{1}<\cdots<x_{n}$ is extended to length-lexicographic order. A relation \mathbf{R} is written in the form $a_{i}=b_{i}$ where a_{i} is a monomial greater than b_{i}. We denote by $a_{i}(\mathbf{R})$ and $b_{i}(\mathbf{R})$ the terms a_{i} and b_{i} respectively of the given relation \mathbf{R}. In a monoid (group), a word containing the L.H.S. of a relation is called reducible word and a word which does not contain the L.H.S. of a relation is called irreducible word. We denote A by the set of irreducible words and by B the set of reducible words. Let us introduce some notations.

- We denote by $\alpha(i, j)=\alpha\left(x_{i}, x_{i-1}, \ldots, x_{j}\right), i \geq j$ an arbitrary irreducible word (possibly e $x_{i}, x_{i-1}, \ldots, x_{j}$ and $\alpha(i, i)=\alpha\left(x_{i}\right)$, a word in the generator x_{i}. We denote the "shift" of α by $\Sigma \alpha(i, j)=\alpha\left(x_{i+1}, \ldots, x_{j+1}\right)$.
- If $U=U_{1} W, V=W V_{1}$ are the given words, then we denote their overlap (at W) by
$U \times_{W} V=U_{1} W V_{1}$.
- We will use $i^{a} j^{b} k^{c} \cdots$ for a word $x_{i}^{a} x_{j}^{b} x_{k}^{c} \cdots$ (especially in overlapping words) when required.
- $\mathbf{U}_{*, \beta}=$ set of irreducible words ending with β and $\mathrm{U}_{\delta, *}=$ set of irreducible words starting with δ.
- Suppose $\beta=\alpha \gamma$ and $\delta=\gamma \varepsilon$; then
$\mathbf{U}_{*, \beta} \times{ }_{\gamma} \mathbf{V}_{\delta, *}=\left\{U \times_{\gamma} V: U \in \mathbf{U}_{*, \beta}, V \in \mathbf{V}_{\delta, *}\right\}$

3. Hilbert Series of $\mathbf{M B}_{5}$ and $\mathbf{M B}_{6}$

We are using the following notions: generally $A_{\alpha}^{[n+1]}$ and $B_{\alpha, \omega}^{[n+1]}$ be the irreducible and reducible words respectively in $\mathbf{M B}_{n+1}$, and α is related with the prefix (beginning) of a word and ω is related with the suffix (end) of the word. For example $A_{k(k-1) \cdots i}^{[n+1]}$ denotes the set of irreducible words in $\mathbf{M B}_{n+1}$ starting with $x_{k} x_{k-1} \cdots x_{i} ; B_{j, k}^{[n+1]}$ denotes the set of reducible words starting with $x_{n} x_{n-1} \cdots x_{j}$ and ending with $x_{n} x_{n-1} \cdots x_{k}$. As special cases we use the following notations: if $j=*$ then the word will start with $x_{n} x_{n-1}$ and

In this paper we compute the Hilbert series of the braid monoids $\mathbf{M B}_{5}$ and $\mathbf{M B}_{6}$ and calculate the growth rates of the above monoids that are 2.395 and 2.6 respectively.
if $j=n-1$ then the word will start with $x_{n} x_{n-1}^{2}$. Also a special reducible word $x_{k} x_{k-1} x_{k}$ is denoted by $B_{\phi, k}^{[n+1]}$. All the above sets are graded by length, so we can introduce the Hilbert series of these sets. Let $Q_{\alpha, \omega}^{[n+1]}(t), P_{\alpha}^{[n+1]}(t)$ and $\mathrm{H}_{M}^{[n+1]}(t)$ denote the Hilbert series of $B_{\alpha, \omega}^{[n+1]}, A_{\alpha}^{[n+1]}$ and $A^{[n+1]}$ respectively for the monoid M, where
$A^{[n+1]}=\{e\} \coprod A_{1}^{[n+1]} \coprod A_{2}^{[n+1]} \coprod \cdots \coprod A_{n}^{[n+1]}$. In [11] we proved Lemma 1, 2 and 3 (using the reduced complete presentation) and constructed a linear system for the reducible words in $\mathbf{M B}_{n+1}$.
Lemma 1 [11]. The following relations hold for the reducible words in $\mathbf{M B}_{n+1}$.

1) $Q_{n-1,1}^{[n+1]}=t^{n+2} P_{n-1}^{[n]}-\sum_{j=2}^{n-1} t^{j-1} Q_{n-1, j}^{[n+1]}$.
2) $Q_{n-2, n}^{[n+1]}=t^{3} P_{n-2}^{[n-1]}$.
3) $Q_{n-2, n-1}^{[n+1]}=t^{4} P_{n-2}^{[n-1]} P_{1}^{[2]}-t^{2} Q_{*, n-1}^{[n]} P_{1}^{[2]}$.
4) $Q_{n-2, i}^{[n+1]}=t^{n-i+3} P_{(n-2) \ldots k}^{[n-1]} P_{n-i}^{[n-i+1]}-\sum_{j=i+1}^{n-1} t^{j-i} Q_{k, j}^{[n+1]}$
$-\sum_{j=i}^{n-1} t^{j-i+2} Q_{k, j}^{[n]} P_{(n-i) \ldots j-i+1}^{[n-i+1]}$,
$i=1, \ldots, n-2$.
Lemma 2 [11]. For $k=1, \ldots, n-3$ the following relations hold for the reducible words in $\mathbf{M B}_{n+1}$.
5) $Q_{k, n}^{[n+1]}=t^{3} P_{(n-2) \cdots k}^{[n-1]}$.
6) $Q_{k, n-1}^{[n+1]}=t^{4} P_{(n-2) \cdots k}^{[n-1]} P_{1}^{[2]}-t^{2} Q_{k, n-1}^{[n]} P_{1}^{[2]}$.
7) $Q_{k, i}^{[n+1]}=t^{n-i+3} P_{(n-2) \ldots k}^{[n-1]} P_{n-i}^{[n-i+1]}-\sum_{j=i+1}^{n-1} t^{j-i} Q_{k, j}^{[n+1]}-$ $\sum_{j=i}^{n-1} t^{j-i+2} Q_{k, j}^{[n]} P_{(n-i) \ldots j-i+1}^{[n-i+1]}, i=1, \ldots, n-2$.
Lemma 3 [11]. In $\mathbf{M B}_{n+1}$,
8) $Q_{n-1, n}^{[n+1]}=Q_{\phi, i}^{[n+1]}=0$.
9) $Q_{\phi, n}^{[n+1]}=t^{3}$.
10) $Q_{n-1, i}^{[n+1]}=Q_{n-i, 1}^{[n-i+2]}, i=2, \ldots, n-1$.
11) $Q_{*, n}^{[n+1]}=Q_{?, n}^{[n+1]}+Q_{n-2, n}^{[n+1]}$ and
$Q_{*, i}^{[n+1]}=Q_{n-2, i}^{[n+1]}+Q_{n-1, i}^{[n+1]}$ for $i=1, \ldots, n-1$.
The linear system for the series $P_{*}^{[n+1]}$ (corresponding to irreducible words) was also proved in [11] in the form of the following lemma.

Lemma 4 [11]. The following relations hold for the irreducible words in $\mathbf{M B}_{n+1}$.

1) $P_{k}^{[n+1]}=P_{k}^{[n]} P_{n}^{[n+1]}+P_{k}^{[n]}, \quad k=1, \ldots, n-1$.
2) $P_{n}^{[n+1]}=t P_{n}^{[n+1]}+P_{n(n-1)}^{[n+1]}+t$.
3) $P_{(n-1) \cdots i}^{[n+1]}=P_{(n-1) \cdots i}^{[n]} P_{n}^{[n+1]}+P_{(n-1) \cdots i}^{[n]}, \quad i=1, \ldots, n-2$.
4) $P_{n(n-1)}^{[n+1]}=t P_{n-1}^{[n+1]}-\sum_{j=1}^{n} t^{j-n-1} Q_{*, j}^{[n+1]} P_{n \cdots j}^{[n+1]}$.
5) $\quad P_{n \cdots k}^{[n+1]}=t P_{(n-1) \cdots k}^{[n+1]}-\sum_{j=1}^{n} t^{j-n-1} Q_{k, j}^{[n+1]} P_{n \cdots j}^{[n+1]}$
$k=1, \ldots, n-2$.
Using the above linear systems we had calculated (see details in [11]) the Hilbert series of $\mathbf{M B}_{3}$ and $\mathbf{M B}_{4}$ and their corresponding growth rate. The outline of the Hilbert series of $\mathbf{M B}_{3}$ is given in an exampleExample 1 [11]. Note that the Hilbert series of the set $A_{1}^{[2]}=\left\{x_{1}, x_{1}^{2}, x_{1}^{3}, \ldots\right\}$ is given by $P_{1}^{[2]}=t+t^{2}+t^{3}+\cdots=\frac{t}{1-t}$. The only two types of reducible words in $\mathbf{M B}_{3}$ are $B_{?, 2}^{[3]}=x_{2} x_{1} x_{2}$ and $B_{1,1}^{[3]}=\left\{x_{2} x_{1}\right\} \times A_{1}^{[2]} \times\left\{x_{2} x_{1}\right\}$. Therefore the corresponding Hilbert series are $Q_{\phi, 2}^{[3]}=t^{3}$ and $Q_{1,1}^{[3]}=\frac{t^{5}}{1-t} \quad$ respectively. Therefore
$P_{1}^{[3]}=\frac{t}{1-t}+\frac{t}{1-t} P_{2}^{[3]}, \quad P_{2}^{[3]}=t+P_{21}^{[3]}+t P_{2}^{[3]}$
$P_{21}^{[3]}=t P_{1}^{[3]}-t^{2} P_{2}^{[3]}-\frac{t^{3}}{1-t} P_{21}^{[3]}$.
Solving the above equations simultaneously we get

$$
\begin{aligned}
P_{1}^{[3]} & =\frac{t}{(1-t)\left(1-t-t^{2}\right)}, \quad P_{2}^{[3]}=\frac{t+t^{2}}{1-t-t^{2}}, \\
P_{21}^{[3]} & =\frac{t^{2}}{1-t-t^{2}} .
\end{aligned}
$$

As we have $A^{[3]}=\{e\} \coprod A_{1}^{[3]} \amalg A_{2}^{[3]}$. Therefore the Hilbert series of $\mathbf{M B}_{3}$ is given by

$$
\begin{aligned}
\mathrm{H}_{\mathrm{M}}^{[3]}(t) & =1+P_{1}^{[3]}+P_{2}^{[3]}=\frac{1}{(1-t)\left(1-t-t^{2}\right)} \quad \text { Remark } \\
& =1+2 t+4 t^{2}+7 t^{3}+12 t^{4}+20 t^{5}+\cdots .
\end{aligned}
$$

One can see that the coefficients $a_{k}^{[3]}$ in the above series are related with Fibonacci numbers $F_{0}=1, F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, F_{5}=8, \ldots$
by the relation $a_{k}^{[3]}=F_{k+2}-1$.
Remark 2. As we have $\frac{1}{(1-t)\left(1-t-t^{2}\right)}=\frac{-1}{1-t}+\frac{5-2 \sqrt{5}}{5\left(1+c_{1} t\right)}+\frac{5+2 \sqrt{5}}{5\left(1-c_{2} t\right)}$ where $c_{1}=\frac{\sqrt{5}-1}{2}$ and $c_{2}=\frac{\sqrt{5}+1}{2}$; the first two terms have a negligible contribution in approximating the series, while the last term $\frac{5+2 \sqrt{5}}{5}\left(1+c_{2} t+c_{2}^{2} t^{2}+c_{2}^{3} t^{3}+\cdots\right)$ approximates the series. Hence $a_{k}^{[3]} \approx \frac{5+2 \sqrt{5}}{5}\left(\frac{\sqrt{5}+1}{2}\right)^{k}$. Thus the growth function $a_{k}^{[3]}$ of $\mathbf{M B}_{3}$ is exponential and the growth rate is $\frac{\sqrt{5}+1}{2}$.
Similarly we had shown that
Example 2 [11]. The Hilbert series of $\mathbf{M B}_{4}$ is given by
$\mathrm{H}_{\mathrm{M}}^{[4]}(t)=\frac{1}{(1-t)\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}\right)} \quad$ and \quad the
corresponding growth rate is 2.087 .
The next result is a direct application of the Lemma 1, Lemma 2, Lemma 3 and Lemma 4.
Lemma 5 [12]. The Hilbert series of the braid monoid $\mathbf{M B}_{5}$ is given by $\mathrm{H}_{\mathrm{M}}^{[5]}(t)=\frac{1}{(1-t)\left(1-3 t+3 t^{3}+t^{4}+t^{5}-t^{6}-t^{7}-t^{8}-t^{9}\right)}$.
Corollary 1 [12]. The growth rate of $\mathbf{M B}_{5}$ is 2.395 .

Lemma 6 [12]. The Hilbert series of the braid monoid $\mathbf{M B}_{6}$ is given by

$$
\mathrm{H}_{\mathrm{MB}}^{[6]}(t)=\frac{1}{(1-t)\left(1-4 t+2 t^{2}+5 t^{3}-t^{4}-t^{5}-3 t^{6}-t^{7}-t^{8}-t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}\right)} .
$$

Corollary 2 [12]. The growth rate of $\mathbf{M B}_{6}$ is approximately equal to 2.6.
Now we have our main result.

Theorem 2. The Hilbert series $\mathbf{H}_{\mathrm{MB}}^{[7]}(t)$ of the braid monoid $\mathbf{M B}_{7}$ is given by

$$
\frac{1}{(1-t)\left(1-5 t+5 t^{2}+6 t^{3}-6 t^{4}-3 t^{5}-4 t^{6}+2 t^{7}+2 t^{8}+3 t^{10}+t^{11}+t^{12}+t^{13}+t^{14}-t^{15}-t^{16}-t^{17}-t^{18}-t^{19}-t^{20}\right)} .
$$

Proof. As above, using the results of the previous lemmas (Lemma 1, Lemma 2, Lemma 3) and of Theorem 5 and Theorem 6 we have the following coefficients of $P_{*}^{[7]}$ in simplified form:

$$
\begin{aligned}
& Q_{*, 6}^{[7]}=\frac{t^{3}}{T_{9}}\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}\right) \\
& Q_{*, 5}^{[7]}=\frac{t^{5}}{T_{5} T_{9}}\left(1-4 t+2 t^{2}+6 t^{3}-t^{4}-3 t^{5}-5 t^{6}-2 t^{7}+2 t^{8}+3 t^{9}+3 t^{10}+t^{11}\right) \\
& Q_{*, 4}^{[7]}=\frac{t^{7}}{T_{2}^{2} T_{5} T_{9}}\left(1-5 t+4 t^{2}+13 t^{3}-14 t^{4}-16 t^{5}+8 t^{6}+15 t^{7}+10 t^{8}-5 t^{9}-11 t^{10}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-8 t^{11}-4 t^{12}+3 t^{13}+5 t^{14}+3 t^{15}+t^{16}\right) \\
& Q_{*, 3}^{[7]}=\frac{t^{9}}{T_{1}^{2} T_{2}^{2} T_{5}^{2} T_{9}}\left(1-8 t+21 t^{2}-8 t^{3}-50 t^{4}+55 t^{5}+45 t^{6}-53 t^{7}-56 t^{8}+4 t^{9}+86 t^{10}\right. \\
& +24 t^{11}-56 t^{12}-34 t^{13}-2 t^{14}+27 t^{15}+19 t^{16}+t^{17}-6 t^{18}-14 t^{19}-7 t^{20}+2 t^{21} \\
& \left.+5 t^{22}+4 t^{23}+t^{24}\right) \text {. } \\
& Q_{*, 2}^{[7]}=\frac{t^{11}}{T_{1}^{2} \cdot T_{2} \cdot T_{5}^{2} \cdot T_{9}^{2}}\left(1-9 t+28 t^{2}-21 t^{3}-63 t^{4}+115 t^{5}+25 t^{6}-117 t^{7}-58 t^{8}+41 t^{9}+191 t^{10}\right. \\
& -10 t^{11}-145 t^{12}-102 t^{13}-19 t^{14}+192 t^{15}+82 t^{16}-60 t^{17}-78 t^{18}-66 t^{19}+33 t^{20} \\
& \left.+29 t^{21}+13 t^{22}+11 t^{23}-10 t^{24}+3 t^{26}+4 t^{27}+2 t^{28}-5 t^{29}-5 t^{30}-3 t^{31}-t^{32}\right) \text {. } \\
& Q_{*, 1}^{[7]}=\frac{t^{13}}{T_{1}^{2} \cdot T_{2} \cdot T_{5} \cdot T_{9}^{2} \cdot T_{14}}\left(1-10 t+36 t^{2}-40 t^{3}-70 t^{4}+200 t^{5}-34 t^{6}-244 t^{7}+46 t^{8}\right. \\
& +164 t^{9}+208 t^{10}-174 t^{11}-278 t^{12}-2 t^{13}+46 t^{14}+330 t^{15}+151 t^{16} \\
& -223 t^{17}-25 t^{18}-123 t^{19}+170 t^{20}+148 t^{21}+25 t^{22}+10 t^{23}-42 t^{24} \\
& -40 t^{25}-18 t^{26}-4 t^{27}-9 t^{28}-3 t^{29}+16 t^{30}+22 t^{31}+10 t^{32}-8 t^{33} \\
& \left.-10 t^{34}-8 t^{35}-3 t^{36}+3 t^{37}+4 t^{38}+3 t^{39}+t^{40}\right) \text {. } \\
& Q_{1,6}^{[7]}=\frac{t^{7}}{T_{9}}\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}\right) \text {. } \\
& Q_{1,5}^{[7]}=\frac{t^{13}}{T_{5} T_{9}}\left(1-2 t^{2}-t^{3}+t^{4}+2 t^{5}+t^{6}\right) \text {. } \\
& Q_{1,4}^{[7]}=\frac{t^{16}}{T_{2}^{2} T_{5} T_{9}}\left(1-2 t^{2}-2 t^{5}-t^{6}+t^{7}+2 t^{8}+t^{9}\right) \text {. } \\
& Q_{1,3}^{[7]}=\frac{t^{t^{18}}}{T_{1}^{2} T_{2}^{2} T_{5}^{2} T_{9}}\left(1-4 t+4 t^{2}+6 t^{3}-12 t^{4}-6 t^{5}+12 t^{6}+9 t^{7}-2 t^{8}-5 t^{9}-3 t^{10}\right. \\
& \left.-4 t^{11}-4 t^{12}+t^{13}+4 t^{14}+3 t^{15}+t^{16}\right) . \\
& Q_{1,2}^{[7]}=\frac{t^{20}}{T_{1}^{2} \cdot T_{2} \cdot T_{5}^{2} \cdot T_{9}^{2}}\left(1-5 t+6 t^{2}+12 t^{3}-32 t^{4}-2 t^{5}+50 t^{6}-8 t^{7}-41 t^{8}-10 t^{9}+35 t^{10}\right. \\
& \left.+32 t^{11}-27 t^{12}-34 t^{13}-7 t^{14}+9 t^{15}+18 t^{16}+15 t^{17}+9 t^{18}-t^{19}-9 t^{20}-8 t^{21}-4 t^{22}-t^{23}\right) \text {. } \\
& Q_{1,1}^{[7]}=\frac{t^{22}}{T_{1}^{2} \cdot T_{2} \cdot T_{5} \cdot T_{9}^{2} \cdot T_{14}}\left(1-6 t+10 t^{2}+10 t^{3}-43 t^{4}+5 t^{5}+74 t^{6}-114 t^{8}-36 t^{9}+151 t^{10}\right. \\
& +66 t^{11}-102 t^{12}-94 t^{13}-10 t^{14}+73 t^{15}+58 t^{16}+21 t^{17}-15 t^{18}-57 t^{19} \\
& \left.-27 t^{20}+9 t^{21}+22 t^{22}+15 t^{23}-4 t^{24}-7 t^{25}-7 t^{26}-3 t^{27}+3 t^{28}+4 t^{29}+3 t^{30}+t^{31}\right) . \\
& Q_{2,6}^{[7]}=\frac{t^{6}}{T_{9}}\left(1-t-2 t^{2}+t^{4}+t^{5}+t^{6}\right) \text {. } \\
& Q_{2,5}^{[7]}=\frac{t^{11}}{T_{5} T_{9}}\left(1-t^{2}-t^{3}-2 t^{4}+2 t^{6}+2 t^{7}+t^{8}\right) \text {. } \\
& Q_{2,4}^{[7]}=\frac{t^{14}}{T_{1} T_{2}^{2} T_{5} T_{9}}\left(1-t-3 t^{3}-t^{4}+5 t^{5}+t^{6}+t^{8}-t^{10}-2 t^{11}-t^{12}\right) \text {. } \\
& Q_{2,3}^{[7]}=\frac{t^{16}}{T_{1}^{2} T_{2}^{2} \tau_{5}^{2} T_{9}}\left(1+4 t-5 t^{2}-3 t^{3}+13 t^{4}-4 t^{5}-4 t^{6}-7 t^{7}-8 t^{8}+14 t^{9}+9 t^{10}\right. \\
& \left.-2 t^{12}-4 t^{13}-t^{14}-t^{15}-t^{16}\right) \text {. } \\
& Q_{2,2}^{[7]}=\frac{t^{18}}{T_{1}^{2} \cdot T_{2}^{2} \cdot T_{5}^{2} \cdot T_{9}^{2}}\left(1-5 t+7 t^{2}+8 t^{3}-33 t^{4}+25 t^{5}+12 t^{6}-31 t^{7}+38 t^{8}-12 t^{9}\right. \\
& -26 t^{10}+t^{11}+30 t^{13}-6 t^{14}-14 t^{15}+2 t^{16}-4 t^{17}+6 t^{18}+6 t^{19}+5 t^{20} \\
& \left.+2 t^{21}-5 t^{22}-5 t^{23}-3 t^{24}-t^{25}\right) \text {. } \\
& Q_{2,1}^{[7]}=\frac{t^{20}}{T_{1}^{2} \cdot T_{2}^{2} \cdot T_{5} \cdot T_{9}^{2} \cdot T_{14}}\left(1-6 t+11 t^{2}+5 t^{3}-41 t^{4}+35 t^{5}+26 t^{6}-52 t^{7}+39 t^{8}-\right. \\
& 13 t^{9}-63 t^{10}+45 t^{11}+70 t^{12}+7 t^{13}-89 t^{14}-64 t^{15}+50 t^{16}+74 t^{17}+24 t^{18} \\
& -14 t^{19}-35 t^{20}-42 t^{21}-9 t^{22}+21 t^{23}+27 t^{24}+12 t^{25}-8 t^{26}-10 t^{27}-8 t^{28} \\
& \left.-3 t^{29}+3 t^{30}+4 t^{31}+3 t^{32}+t^{33}\right) \text {. } \\
& Q_{3,6}^{[7]}=\frac{t^{5}}{T_{9}}\left(1-t-t^{2}-t^{3}+t^{5}+t^{6}+t^{7}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{3,5}^{[7]}=\frac{t^{9}}{T_{1} T_{5} T_{9}}\left(1-2 t+t^{4}+2 t^{5}-t^{6}+t^{7}-t^{9}-t^{10}-t^{11}\right) \text {. } \\
& Q_{3,4}^{[7]}=\frac{t^{12}}{T_{1} T_{2}^{2} T_{5}}\left(1-t-4 t^{2}+2 t^{3}+6 t^{4}+2 t^{5}-2 t^{6}-5 t^{7}-5 t^{8}-2 t^{9}+2 t^{10}+4 t^{11}+3 t^{12}+t^{13}\right) \text {. } \\
& Q_{3,3}^{[7]}=\frac{t^{14}}{T_{1}^{2} T_{2}^{2} T_{5}^{2} T_{9}}\left(1-5 t+10 t^{2}-7 t^{3}-14 t^{4}+32 t^{5}+t^{6}-33 t^{7}-11 t^{8}+16 t^{9}\right. \\
& \left.+29 t^{10}+3 t^{11}-12 t^{12}-9 t^{13}-10 t^{14}-3 t^{15}+3 t^{16}+5 t^{17}+4 t^{18}+t^{19}\right) \text {. } \\
& Q_{3,2}^{[7]}=\frac{t^{16}}{T_{1}^{2} T_{2} T_{5}^{2} T_{9}^{2}}\left(1-6 t+13 t^{2}-7 t^{3}-17 t^{4}+23 t^{5}+t^{6}+20 t^{7}-52 t^{8}-49 t^{9}\right. \\
& +105 t^{10}+31 t^{11}-38 t^{12}-40 t^{13}-30 t^{14}+32 t^{15}+8 t^{16}+2 t^{17}+10 t^{18} \\
& \left.-t^{19}+2 t^{20}+3 t^{21}+4 t^{22}+2 t^{23}-5 t^{24}-5 t^{25}-3 t^{26}-t^{27}\right) \text {. } \\
& Q_{3,1}^{[7]}=\frac{t^{18}}{T_{1}^{2} T_{2} T_{8} T_{9}^{2} T_{14}}\left(1-7 t+18 t^{2}-15 t^{3}-16 t^{4}+34 t^{5}-9 t^{6}+12 t^{7}-42 t^{8}\right. \\
& -23 t^{9}+81 t^{10}-3 t^{11}-11 t^{12}-31 t^{13}-24 t^{14}+43 t^{15}-27 t^{16}-18 t^{17}+41 t^{18}+ \\
& 26 t^{19}+7 t^{20}-22 t^{21}-27 t^{22}-29 t^{23}-6 t^{24}+20 t^{25}+25 t^{26}+11 t^{27}-8 t^{28}- \\
& \left.10 t^{29}-8 t^{30}-3 t^{31}+3 t^{32}+4 t^{33}+3 t^{34}+t^{35}\right) \text {. } \\
& Q_{4,6}^{[7]}=\frac{t^{4}}{T_{9}}\left(1-t-2 t^{2}+t^{5}+t^{6}+t^{7}+t^{8}\right) \text {. } \\
& Q_{4,5}^{[7]}=\frac{t^{7}}{T_{1} T_{5} T_{9}}\left(1-3 t+4 t^{3}+2 t^{4}-t^{5}-3 t^{6}-2 t^{7}-2 t^{8}+2 t^{10}+2 t^{11}+t^{12}\right) \text {. } \\
& Q_{4,4}^{[7]}=\frac{t^{10}}{T_{1} T_{2} T_{5} T_{9}}\left(2-8 t+4 t^{2}+15 t^{3}-7 t^{4}-12 t^{5}-7 t^{6}+2 t^{7}+10 t^{8}+7 t^{9}+4 t^{10}-2 t^{11}-5 t^{12}-3 t^{13}-t^{14}\right) \text {. } \\
& Q_{4,3}^{[7]}=\frac{t^{12}}{T_{1}^{2} T_{2}^{2} T_{5}^{2} T_{9}}\left(1-4 t-t^{2}+19 t^{3}-4 t^{4}-42 t^{5}+2 t^{6}+59 t^{7}+15 t^{8}-44 t^{9}\right. \\
& \left.-35 t^{10}+6 t^{11}+31 t^{12}+15 t^{13}-2 t^{14}-8 t^{15}-13 t^{16}-6 t^{17}+2 t^{18}+5 t^{19}+4 t^{20}+t^{21}\right) . \\
& Q_{4,2}^{[7]}=\frac{t^{14}}{T_{1}^{2} T_{2} T_{5}^{2} T_{1}^{2}}\left(1-6 t+11 t^{2}-4 t^{3}+2 t^{4}-12 t^{5}-34 t^{6}+70 t^{7}+33 t^{8}-34 t^{9}\right. \\
& -94 t^{10}-51 t^{11}+153 t^{12}+69 t^{13}-52 t^{14}-66 t^{15}-48 t^{16}+35 t^{17}+20 t^{18}+7 t^{19} \\
& \left.+10 t^{20}-8 t^{21}+t^{22}+3 t^{23}+4 t^{24}+2 t^{25}-5 t^{26}-5 t^{27}-3 t^{28}-t^{29}\right) \text {. } \\
& Q_{4,1}^{[7]}=\frac{t^{16}}{T_{1}^{2} T_{2} T_{5} T_{9}^{2} T_{14}}\left(1-7 t+15 t^{2}+t^{3}-41 t^{4}+35 t^{5}+12 t^{6}-11 t^{7}+20 t^{8}-36 t^{9}\right. \\
& -26 t^{10}-40 t^{11}+94 t^{12}+130 t^{13}-83 t^{14}-133 t^{15}-43 t^{16}+77 t^{17}+54 t^{18}-8 t^{19}+ \\
& 20 t^{20}+9 t^{21}-16 t^{22}-15 t^{23}-14 t^{24}-22 t^{25}-6 t^{26}+17 t^{27}+24 t^{28}+11 t^{29}-8 t^{30} \\
& \left.-10 t^{31}-8 t^{32}-3 t^{33}+3 t^{34}+4 t^{35}+3 t^{36}+t^{37}\right) \text {. } \\
& Q_{5,5}^{[7]}=\frac{t^{5}}{T_{1}} \text {. } \\
& Q_{5,4}^{[7]}=\frac{t^{7}}{T_{1} T_{2}} \text {. } \\
& Q_{5,3}^{[7]}=\frac{t^{9}}{T_{2} T_{5}}\left(1-t^{2}\right) \text {. } \\
& Q_{5,2}^{[7]}=\frac{t^{11}}{T_{5} T_{9}}\left(1-t-2 t^{2}+t^{3}+2 t^{4}+t^{5}-t^{6}-t^{7}\right) \text {. } \\
& Q_{5,1}^{[7]}=\frac{t^{13}}{T_{9} T_{14}}\left(1-2 t-2 t^{2}+4 t^{3}+3 t^{4}-5 t^{6}-4 t^{7}+t^{8}+2 t^{9}+4 t^{10}+t^{11}-t^{12}-t^{13}-t^{14}\right) \text {. }
\end{aligned}
$$

Now we have the system for irreducible words (of Lemma 4) of 12 equations and the same number of variables $P_{*}^{[7]}$:

$$
\begin{aligned}
& P_{1}^{[7]}=t\left(\frac{\left.1+P_{T_{1}^{[7]}}^{T_{1}}\right)}{}\right. \\
& P_{2}^{[7]}=t(t+1)\left(\frac{1+P_{C_{14}}^{[7]}}{T_{14}}\right) \\
& P_{3}^{[7]}=t\left(1-t^{2}-t^{3}-t^{4}\right)\left(\frac{1+P_{0}^{[7]}}{T_{14}}\right) \\
& P_{4}^{[7]}=t\left(t^{8}+t^{7}+t^{6}+t^{5}-2 t^{2}-t+1\right)\left(\frac{1+P_{6}^{[7]}}{T_{14}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& P_{5}^{[7]}=t\left(1-2 t-2 t^{2}+2 t^{3}+2 t^{4}+2 t^{5}-t^{9}-t^{10}-t^{11}-t^{12}-t^{13}\right)\left(\frac{1+l_{1}^{[7]}}{T_{14}}\right) . \\
& P_{6}^{[7]}=t P_{6}^{[7]}+P_{65}^{[7]}+t . \\
& P_{54321}^{[7]}=P_{54321}^{[6]}\left(1+P_{6}^{[7]}\right) . \\
& P_{54321}^{[7]}=t^{5}\left(1-3 t+3 t^{3}+t^{4}+t^{5}-t^{6}-t^{7}-t^{8}-t^{9}\right)\left(\frac{1+P_{6}^{[7]}}{T_{14}}\right) . \\
& P_{5432}^{[7]}=t^{4}\left(1-2 t-2 t^{2}+2 t^{3}+3 t^{4}+t^{5}-t^{7}-t^{8}-t^{9}-t^{10}\right)\left(\frac{1+P_{6}^{[7]}}{T_{14}}\right) . \\
& P_{543}^{[7]}=t^{3}\left(1-2 t-t^{2}+t^{3}+t^{4}+2 t^{5}+t^{6}-t^{8}-t^{9}-t^{10}-t^{11}\right)\left(\frac{1+c_{6}^{[7]}}{T_{14}}\right) . \\
& P_{54}^{[7]}=t^{2}\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}-t^{9}-t^{10}-t^{11}-t^{12}\right)\left(\frac{1+P_{6}^{[7]}}{T_{14}}\right) . \\
& P_{654321}^{[7]}=t P_{54321}^{[7]}-t^{-6} Q_{1,1}^{[7]} P_{654321}^{[7]}-t^{-5} Q_{1,2}^{[7]} P_{65432}^{[7]}-t^{-4} Q_{1,3}^{[7]} P_{6543}^{[7]}-t^{-3} Q_{1,4}^{[7]} P_{654}^{[7]}-t^{-2} Q_{1,5}^{[7]} P_{65}^{[7]]}-t^{-1} Q_{1,6}^{[7]} P_{6}^{[7]} . \\
& P_{65432}^{[7]}=t P_{5432}^{[7]}-t^{-6} Q_{2,1}^{[7]} P_{654321}-t^{-5} Q_{2,2}^{[7]} P_{65432}^{[7]}-t^{-4} Q_{2,3}^{[7]} P_{6543}^{[7]}-t^{-3} Q_{2,4}^{[7]} P_{654}^{[7]} \quad-t^{-2} Q_{2,5}^{[7]} P_{65}^{[7]}-t^{-1} Q_{2,6}^{[7]} P_{6}^{[7]} \\
& P_{6543}^{[7]}=t P_{543}^{[7]}-t^{-6} Q_{3,1}^{[7]} P_{654321}^{[7]}-t^{-5} Q_{3,2}^{[7]} P_{65432}^{[7]}-t^{-4} Q_{3,3}^{[7]} P_{6543}^{[7]}-t^{-3} Q_{3,4}^{[7]} P_{654}^{[7]}-t^{-2} Q_{3,5}^{[7]} P_{65}^{[7]}-t^{-1} Q_{3,6}^{[7]} P_{6}^{[7]} . \\
& P_{654]}^{[7]}=t P_{54}^{[7]}-t^{-6} Q_{4,1}^{[7]} P_{654321}^{[7]}-t^{-5} Q_{4,2}^{[7]} P_{65432}^{[7]}-t^{-4} Q_{4,3}^{[7]} P_{6543}^{[7]}-t^{-3} Q_{4,4}^{[7]} P_{654}^{[7]}-t^{-2} Q_{4,5}^{[7]} P_{55}^{[7]}-t^{-1} Q_{4,5}^{[7]} P_{6}^{[7]} . \\
& P_{65}^{[7]}=t P_{5}^{[7]}-t^{-6} Q_{*, 1}^{[7]} P_{654321}^{[7]}-t^{-5} Q_{*, 2}^{[7]} P_{65432}^{[7]}-t^{-4} Q_{*, 3}^{[7]} P_{6543}^{[7]}-t^{-3} Q_{*, 4}^{[7]} P_{654}^{[7]}-t^{-2} Q_{*, 5}^{[7]} P_{65}^{[7]}-t^{-1} Q_{*, 6}^{[7]} P_{6}^{[7]} .
\end{aligned}
$$

Now solving this system for the variables the above equations simultaneously for the variables,
$P_{j}^{[7]} ; j=54321,5432,543,54,654321,65432,6543,654,65,6,5,4,3,2,1$ we get the following results: let

$$
T_{20}=1-5 t+5 t^{2}+6 t^{3}-6 t^{4}-3 t^{5}-4 t^{6}+2 t^{7}+2 t^{8}+3 t^{10}+t^{11}+t^{12}+t^{13}+t^{14}-t^{15}-t^{16}-t^{17}
$$

$$
-t^{18}-t^{19}-t^{20}
$$

$$
P_{1}^{[7]}=\frac{t}{T_{1} \cdot T_{20}}, \quad P_{2}^{[7]}=\frac{t(t+1)}{T_{20}}, \quad P_{3}^{[7]}=\frac{\left(t-t^{3}-t^{4}-t^{5}\right)}{T_{20}}, \quad P_{4}^{[7]}=\frac{t\left(t^{8}+t^{7}+t^{6}+t^{5}-2 t^{2}-t+1\right)}{T_{20}} .
$$

$$
P_{5}^{[7]}=\frac{t\left(1-2 t-2 t^{2}+2 t^{3}+2 t^{4}+2 t^{5}-t^{9}-t^{10}-t^{11}-t^{12}-t^{13}\right)}{T_{20}}
$$

$$
P_{6}^{[7]}=\frac{t\left(1-3 t-t^{2}+5 t^{3}+2 t^{4}+t^{5}-3 t^{6}-3 t^{7}-t^{8}-2 t^{9}+t^{14}+t^{15}+t^{16}+t^{17}+t^{18}+t^{19}\right)}{T_{20}} .
$$

$$
P_{54321}^{[7]}=\frac{t^{5}\left(1-3 t+3 t^{3}+t^{4}+t^{5}-t^{6}-t^{7}-t^{8}-t^{9}\right)}{T_{20}} .
$$

$$
P_{5432}^{[7]}=\frac{t^{4}\left(1-2 t-2 t^{2}+2 t^{3}+3 t^{4}+t^{5}-t^{7}-t^{8}-t^{9}-t^{10}\right)}{T_{20}}
$$

$$
P_{543}^{[7]}=\frac{t^{3}\left(1-2 t-t^{2}+t^{3}+t^{4}+2 t^{5}+t^{6}-t^{8}-t^{9}-t^{10}-t^{11}\right)}{T_{20}}
$$

$$
P_{54}^{[7]}=\frac{t^{2}\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}-t^{9}-t^{10}-t^{11}-t^{12}\right)}{T_{20}} .
$$

$$
P_{654321}^{[7]}=\frac{t^{6}\left(1-4 t+2 t^{2}+5 t^{3}-t^{4}-t^{5}-3 t^{6}-t^{7}-t^{8}-t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}\right)}{T_{20}} \quad \cdot \quad P_{65432}^{[7]}=\frac{t^{5}\left(1-3 t-t^{2}+5 t^{3}+3 t^{4}-t^{5}-3 t^{6}-3 t^{7}-t^{8}-t^{9}+t^{11}+t^{12}+t^{13}+t^{14}+t^{15}\right)}{T_{20}}
$$

$$
P_{6543}^{[7]}=\frac{t^{4}\left(1-3 t+3 t^{3}+2 t^{4}+t^{5}-2 t^{6}-2 t^{7}-2 t^{8}-t^{9}-t^{10}+t^{12}+t^{13}+t^{14}+t^{15}+t^{16}\right)}{T_{20}}
$$

$$
P_{654}^{[7]}=\frac{t^{3}\left(1-3 t+4 t^{3}-t^{7}-t^{8}-2 t^{9}-t^{10}-t^{11}+t^{13}+t^{14}+t^{15}+t^{16}+t^{17}\right)}{T_{20}}
$$

$$
P_{65}^{[7]}=\frac{t^{2}\left(1-3 t+3 t^{3}+2 t^{4}-2 t^{6}-t^{8}-t^{9}-t^{10}-t^{11}-t^{12}+t^{14}+t^{15}+t^{16}+t^{17}+t^{18}\right)}{T_{20}}
$$

Now we have $A^{[7]}=\{e\} \coprod A_{1}^{[7]} \coprod A_{2}^{[7]} \coprod A_{3}^{[7]} \coprod A_{4}^{[7]} \coprod A_{5}^{[7]} \coprod A_{6}^{[7]}$. Therefore
$\mathrm{H}_{\mathrm{MB}}^{[7]}(t)=1+\sum P_{i}^{[7]} ; 1 \leq i \leq 6$.
Substituting all the required values of the irreducible words we get the following Hilbert series of braid monoid $\mathbf{M B}_{7}$ as:

$$
\mathrm{H}_{\mathrm{MB}}^{[7]}(t)=\frac{1}{(1-t)\left(1-5 t+5 t^{2}+6 t^{3}-6 t^{4}-3 t^{5}-4 t^{6}+2 t^{7}+2 t^{8}+3 t^{10}+\sum_{i=1}^{14} t^{i}-\sum_{i=15}^{20} t^{i}\right)} .
$$

Corollary 3. The growth rate of $\mathbf{M B}_{7}$ is approximately equal to 2.74 .
Proof. From the approximated partial fraction (again using Mapple) of

$$
\frac{1}{(1-t)\left(1-5 t+5 t^{2}+6 t^{3}-6 t^{4}-3 t^{5}-4 t^{6}+2 t^{7}+2 t^{8}+3 t^{10}+t^{11}+t^{12}+t^{13}+t^{14}-t^{15}-t^{16}-t^{17}-t^{18}-t^{19}-t^{20}\right)}
$$

we see that the term $\frac{8.8136}{1-2.7397 t}$ from the above Hilbert Series has considerable coefficients in its expansion
$8.8136\left(1+2.7397 t+(2.7397)^{2} t^{2}+(2.7397)^{3} t^{3}+\cdots\right)$.
Therefore the growth function $a_{k}^{[7]} \approx 8.8136(2.7397)^{k}$ and hence the growth rate of $\mathbf{M B}_{7}$ is approximately equal to 2.74 .

At the end we are giving two conjectures about the degree of a polynomial involved in the Hilbert series of $\mathbf{M B}_{n+1}$ and about the growth rate of braid monoid $\mathbf{M B}_{n+1}$.
Conjecture 1: The degree of the polynomial (other than $1-t$) in the denominator of the Hilbert series of $\mathbf{M B}_{n+1}$ is $\frac{n(n+1)}{2}-1$.
Let r_{k} be the growth rate of $\mathbf{M B}_{k}$, then we have the following growth rates: $r_{3}=1.6, r_{4}=2.08, r_{5}=2.39$, $r_{6}=2.6$ and $r_{7}=2.74$. The following graph shows the values of r_{k}.

Conjecture 2: The upper bound for the growth rate of the braid monoid $\mathbf{M B}_{n+1}$ is 3 .

REFERENCES

[1] D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296(1986), pp. 641-659.
[2] E. Artin, Theory of braids, Ann. Math. 48(1947), 101-126.
[3] B. Berceanu, Z. Iqbal, Universal upper bound for the growth of Artin monids, arXiv:0805.2656v1 [math.GR], 2008.
[4] G. Bergman, The diamond lemma for ring theory, Adv. in Math 29 (1978), pp. 178-218.
[5] L. A. Bokut, Y. Fong, W. -F. Ke, and L. -S. Shiao. Gröbner-Shirshov bases for braid semigroup, In Advances in algebra, World Sci. Publ. 2003, pages 60-72.
[6] K. S. Brown, The geometry of rewriting systems: a proof of Anick-Groves-Squeir theorem, in: Algorithms and Classification in Combinatorial Group Theory (G. Baumslag, C.F. Miller, eds.), MSRI Publications 23, Springer, New York, 1992, pp.137-164.
[7] P. M. Cohn, Further algebra and applications, Springer-Verlag London, 2003.
[8] P. Deligne, Les immeubles des groupes de tresses generalises, Invention math. 17 (1972), 273-302.
[9] F. A. Garside, The braid groups and other groups, Quat. J. Math. Oxford, 2^{e} ser. 20 (1969), 235-254.
[10] P. D. Harpe. Topics in Geometric Group Theory. America: The University of Chicago Press, 2000.
[11] Z. Iqbal, Hilbert series of positive braids, Algebra Colloquium, spec. no. 1, 18(2011), pp.1017-1028.
[12] Zaffar Iqbal, Shamaila Yousaf, Sadia Noureen, Growth rate of the Braid monoids $\mathrm{MB}_{n+1}, n \leq 5$, International Conference On Research And Education In Mathematics: ICREM5. AIP Conference Proceedings, Volume 1450, pp. 346-350 (2012).
[13] P. Xu, Growth of the positive braid semigroup, J. Pure Appl. Algebra 80(1992), no. 2,197-215.

