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ABSTRACT: In [3] we proved that the growth rate of all the spherical Artin monoids is less than 4. In [11] we gave an algorithm 

to find the Hilbert series of the braid monoids  1nMB   and found the Hilbert series and the growth rate of 3MB  and 4MB , in 

particular. In [12] we gave the Hilbert series and the growth rates of 5MB  and 6MB . In this paper we compute the Hilbert 

series and the growth rate of 7MB . 
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1.INTRODUCTION 

The braid group 1nB  admits the following classical 

presentation given by Artin: [2]  
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Elements 

of 1nB  are words expressed in the generators 

nxxx ,,, 21   and their inverses. The braid monoid 1nMB  

has the similar presentation  

.
11if

2||if
,,,

111

211 | 







niyyyyyy

jiyyyy
yyy

iiiiii

ijji

nn MB
Garside 

[9] proved that the map 11:   nn BMB  given by 

ii xy )( is injective. The elements of 1nMB  are called 

positive braids. 

In 1972, P. Deligne [8] proved that the Hilbert series (will be 

defined later) of all the Artin monoids are rational functions.  

In 1992, P. Xu [13] found the Hilbert series of the braid 

monoids 3MB  and 4MB
 
and she also proved that the 

Hilbert series of 1nMB  is a rational function. She developed 

a linear system for 1nMB  of size !n  and she succeeded to 

reduce it to 222
][1 2

1





n

n
 equations. 

In 2003, Bokut [bok] gave the non-commutative Gröbner 

bases or complete presentation of the braid monoid 1nMB  

(with the length-lexicographic order induced by nxx 1

) and proved: 

Theorem 1 [5]. A complete presentation (Gröbner bases) of 

1nMB  consists of the following relations: 

( )                , 

(ii)        (     )                   (  

   )       (   ), 1      , 1       

(For notations see Section sec 2.) In [11] we slightly modified 

the complete presentation of  1nMB  (given by Bokut) to 

make it reduced (i.e., all the relations do not contain reducible 

words) for the purpose of computation of Hilbert series. Using 

the reduced complete presentation (non-commutative Gröbner 

bases) of 1nMB we found another system of equations to 

compute the Hilbert series. We constructed a linear system of 

equations for reducible as well as for irreducible words. The 

size of the system is  322  nn   which is much smaller 

than the size 222
][1 2

1





n

n
 of Xu's system for 7n . 

Using this system we gave an algorithm to compute 

inductively the Hilbert series of  1nMB . 

Definition 1 [1].  Let G be a finitely generated group and  

S   be a finite set of generators of G . The word length 

)(glS of an element Gg is the smallest integer n for 

which there exist 
1

1,...,  SSss n such that

nssg 1 . 

Definition 2 [1].  Let G be a finitely generated group and 

S  be a finite set of generators of G . The growth function of 

the pair ),( SG  associates to an integer 0k  the number 

)(ka  of elements Gg  such that kglS )(  and the 

corresponding spherical growth series or the Hilbert series is 

given by 
k

k
G tkatP )()(

0





 . 

For a sequence  1}{ kks  of positive numbers, we define the 

growth rate by: 

Definition 3. We say that 1}{ kks  has a growth rate  (  is 

a positive real number) if  

.
log

explim )( 
k

sk

k
 

In [4] we have proved that the growth rate of all the spherical 
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Artin monoids is less than 4. In [11] we showed that the 

growth functions are exponential and the growth rates are 

(approximately) 1.618 and 2.0868 respectively for the 

monoids 3MB  and 4MB . 

In this paper we compute the Hilbert series of the braid 

monoids 5MB  and 6MB  and calculate the growth rates of 

the above monoids that are 2.395 and 2.6 respectively. 

 

2. Some Necessary Notions 
All the following notions are in [1,4-7] under different names: 

complete presentation, Gröbner bases, presentation with 

solvable ambiguities, rewriting system and so on. In the free 

monoid generated by nxx ,,1   the total order on the set of 

generators given by nxx 1  is extended to 

length-lexicographic order.  A relation R is written in the 

form ii ba   where ia  is a monomial greater than ib . We 

denote by )(Ria   and  )(Rib  the terms ia  and ib  

respectively of the given relation R .  In a monoid (group), a 

word containing the L.H.S. of a relation is called reducible 

word and a word which does not contain the L.H.S. of a 

relation is called irreducible word. We denote A  by the set 

of irreducible words and by B  the set of reducible words. Let 

us introduce some notations. 

 We denote by  jixxxji jii   ),,,,(),( 1   an 

arbitrary irreducible word (possibly e jii xxx ,,, 1   and 

),(),( ixii    a word in the generator ix . We denote the 

``shift'' of  by  ),,(),( 11  ji xxji   . 

 If WUU 1 , 1WVV   are the given words, then we 

denote their overlap (at W ) by  

.11WVUVU W   

We will use cba kji  for a word c

k

b

j

a

i xxx (especially 

in overlapping words) when required. 

  ,U  set of irreducible words ending with   and 

,U  set of irreducible words starting with  .   

 Suppose    and   ; then 

},:{ ,,,,    VUVU VUVU
 

3. Hilbert Series of 5MB  and 6MB
 

 We are using the following notions: generally 
]1[ nA  and 

]1[

,

nB   be the irreducible and reducible words respectively in 

1nMB , and   is related with the prefix (beginning) of a 

word and is related with the suffix (end) of the word. For 

example
]1[

)1(





n

ikkA  denotes the set of irreducible words in 

1nMB  starting with ikk xxx 1 ;
]1[

,

n

kjB denotes the set of 

reducible words starting with jnn xxx 1  and ending with 

knn xxx 1  . As special cases we use the following 

notations: if j  then the word will start with 1nn xx and 

if 1 nj then the word will start with 
2

1nn xx . Also a 

special reducible word kkk xxx 1 is denoted by  
]1[

,

n

kB . All 

the above sets are graded by length, so we can introduce the 

Hilbert series of these sets. Let ),(]1[

, tQ n

 )(]1[ tP n

 and 

)(]1[ tn

M


H denote the Hilbert series of ,]1[

,

nB 

]1[ nA   and 

]1[ nA respectively for the monoid M , where  

.}{ ]1[]1[

2

]1[

1

]1[   n

n

nnn AAAeA   In [11] we 

proved Lemma 1, 2 and 3 (using the reduced complete 

presentation) and constructed a linear system for the reducible 

words in 1nMB . 

Lemma 1 [11]. The following relations hold for the reducible 

words in 1nMB . 

 1) ]1[

,1

1
1

2

][

1

2]1[

1,1













  n

jn

j
n

j

n

n

nn

n QtPtQ . 

 2) ]1[

2

3]1[

,2







  n

n

n

nn PtQ . 

 3) 
]2[

1

][

1,

2]2[

1

]1[

2

4]1[

1,2 PQtPPtQ n

n

n

n

n

nn 







  . 

 )       
[   ]         (   )  

[   ]     
[     ]  ∑         

[   ]

   

     

 ∑          
[ ]

   

   

 (   )      
[     ]   

           

Lemma 2 [11]. For 3,,1  nk  the following relations 

hold for the reducible words in 1nMB . 

1) 
]1[

)2(

3]1[

,





  n

kn

n

nk PtQ  . 

2) 
]2[

1

][

1,

2]2[

1

]1[

)2(

4]1[

1, PQtPPtQ n

nk

n

kn

n

nk 







   . 

 )      
[   ]

        (   )  
[   ]

    
[     ]

          
[   ]   

      

           
[ ]
 (   )      
[     ]

              
     

Lemma 3 [11].  In ,1nMB   

1) .0]1[

,

]1[

,1  



n

i

n

nn QQ    

2) 
3]1[

, tQ n

n 

  . 

3) .1,,2,]2[

1,

]1[

,1  





 niQQ in

in

n

in    

4) 
]1[

,2

]1[

?,

]1[

,







  n

nn

n

n

n

n QQQ and 

]1[

,1

]1[

,2

]1[

,











  n

in

n

in

n

i QQQ  for 1,,1  ni  . 

The linear system for the series 
]1[ 



nP (corresponding to 

irreducible words) was also proved in [11] in the form of the 

following lemma. 
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 Lemma 4 [11]. The following relations hold for the 

irreducible words in 1nMB . 

 )1 ][]1[][]1[ n

k

n

n

n

k

n

k PPPP  
,  1,,1  nk  . 

 )2 tPtPP n

nn

n

n

n

n  



 ]1[

)1(

]1[]1[
. 

 )3 ][

)1(

]1[][

)1(

]1[

)1(

n

in

n

n

n

in

n

in PPPP  







  ,  2,,1  ni  . 

 )4 ]1[]1[

,

1

1

]1[

1

]1[

)1(















  n

jn

n

j

nj
n

j

n

n

n

nn PQttPP  . 

 )5 ]1[]1[

,

1

1

]1[

)1(

]1[ 







  n

jn

n

jk

nj
n

j

n

kn

n

kn PQttPP  ,  

2,,1  nk  . 

Using the above linear systems we had calculated (see details 

in [11]) the Hilbert series of  3MB  and 4MB  and their 

corresponding growth rate. The outline of the Hilbert series of  

3MB  is given in an exampleExample 1 [11]. Note that the 

Hilbert series of the set },,,{ 3

1

2

11

]2[

1 xxxA  is given by 

.
1

32]2[

1 t
ttttP


   The only two types of 

reducible words in 3MB are 212

]3[

2?, xxxB   and 

}{}{ 12

]2[

112

]3[

1,1 xxAxxB  . Therefore the corresponding 

Hilbert series are 
3]3[

2, tQ  and  
t

tQ  1

]3[

1,1

5

  respectively. 

Therefore  

,
11

]3[

2

]3[

1 P
t

t

t

t
P







]3[

2

]3[

21

]3[

2 tPPtP  and 




 ]3[

21

3
]3[

2

2]3[

1

]3[

21
1

P
t

t
PttPP  

 Solving the above equations simultaneously we get  

,
)1)(1( 2

]3[

1
ttt

t
P


 ,

1 2

2
]3[

2
tt

tt
P






.
1 2

2
]3[

21
tt

t
P




 

As we have  .}{ ]3[

2

]3[

1

]3[ AAeA   Therefore the 

Hilbert series of 3MB  is given by  

.20127421

)1)(1(

1
1)(

5432

2

]3[

2

]3[

1

]3[






ttttt

ttt
PPt

M
H

Remark 1. 

One can see that the coefficients 
]3[

ka in the above series are 

related with Fibonacci numbers 

,8,5,3,2,1,1 543210  FFFFFF   

by the relation 12

]3[  kk Fa . 

Remark 2. As we have  
)1(5

525
)1(5

525
1

1

)1)(1(

1

21
2 tctctttt 









  

where 
2

15
1

c  and ;2
15

2
c the first two terms have a 

negligible contribution in approximating the series, while the 

last term )( 33

2

22

225

525 1  tctctc  approximates 

the series. Hence  
k

ka )( 2

15

5

525]3[  . Thus the growth 

function 
]3[

ka of 3MB  is exponential and the growth rate is 

2
15  . 

Similarly we had shown that 

Example 2 [11]. The Hilbert series of 4MB is given by  

)21)(1(

1
)(

5432

]4[

tttttt
t




M
H

 and the 

corresponding growth rate is 2.087. 

The next result is a direct application of the Lemma 1, Lemma 

2, Lemma 3 and Lemma 4. 

Lemma 5 [12]. The Hilbert series of the braid monoid 5MB is 

given by .
)331)(1(

1
)(

9876543

]5[

ttttttttt
t




M
H  

Corollary 1 [12]. The growth rate of  5MB  is 395.2 . 

 

Lemma 6 [12]. The Hilbert series of the braid monoid 6MB  

is given by 

.)(
)35241)(1(

1]6[
141312111098765432 ttttttttttttttt

t



MB

H   

Corollary 2 [12]. The growth rate of 6MB is approximately 

equal to 2.6. 

Now we have our main result. 

 

 

Theorem 2. The Hilbert series )(]7[ t
MB

H  of the braid monoid 7MB is given by 

 .
)3224366551)(1(

1
20191817161514131211108765432 tttttttttttttttttttt 

  

Proof. As above, using the results of the previous lemmas (Lemma 1, Lemma 2, Lemma 3) and of Theorem 5 and Theorem 6 we 

have the following coefficients of 
]7[

P in simplified form: 

)21( 5432]7[

6, 9

3

tttttQ
T
t  . 

)3322536241( 111098765432]7[

5, 95

5

tttttttttttQ
TT

t  . 

1098765432]7[

4, 11510158161413451(
95

2
2

7

ttttttttttQ
TTT

t    
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 )35348 161514131211 tttttt 
1098765432]7[

3, 864565345555082181(
9

2
5

2
2

2
1

9

ttttttttttQ
TTTT

t    

 
2120191817161514131211 2714619272345624 ttttttttttt    

 )45 242322 ttt  . 

1098765432

...

]7[

2, 19141581172511563212891(2
9

2
52

2
1

11

ttttttttttQ
TTTT

t    

 
20191817161514131211 33667860821921910214510 tttttttttt    

 )35524310111329 3231302928272624232221 ttttttttttt  . 

8765432

....

]7[

1, 4624434200704036101(
14

2
952

2
1

13

ttttttttQ
TTTTT

t    

 
161514131211109 151330462278174208164 tttttttt    

 
2423222120191817 42102514817012325223 tttttttt    

 
333231302928272625 81022163941840 ttttttttt    

 )3433810 40393837363534 ttttttt  . 

)21( 5432]7[

6,1 9

7

tttttQ
T
t  . 

)221( 65432]7[

5,1 95

13

tttttQ
TT

t  . 

)2221( 987652]7[

4,1
95

2
2

16

ttttttQ
TTT

t  . 

1098765432]7[

3,1 3529126126441(
9

2
5

2
2

2
1

18

ttttttttttQ
TTTT

t    

 )3444 161514131211 tttttt  . 

1098765432

...

]7[

2,1 35104185023212651(2
9

2
52

2
1

20

ttttttttttQ
TTTT

t    

 
2120191817161514131211 899151897342732 ttttttttttt  )4 2322 tt  . 

109865432

....

]7[

1,1 1513611474543101061(
14

2
952

2
1

22

tttttttttQ
TTTTT

t    

 
191817161514131211 5715215873109410266 ttttttttt    

 )34337741522927 313029282726252423222120 tttttttttttt  . 

)21( 6542]7[

6,2 9

6

tttttQ
T
t  . 

)2221( 876432]7[

5,2 95

11

ttttttQ
TT

t  . 

)2531( 12111086543]7[

4,2
95

2
21

14

tttttttttQ
TTTT

t  . 

1098765432]7[

3,2 9148744133541(
9

2
5

2
2

2
1

16

ttttttttttQ
TTTT

t    

 )42 1615141312 ttttt  . 

98765432

...

]7[

2,2 1238311225338751(2
9

2
5

2
2

2
1

18

tttttttttQ
TTTT

t    

20191817161514131110 566421463026 tttttttttt    

 )3552 2524232221 ttttt  . 

 8765432

....

]7[

1,2 395226354151161(
14

2
95

2
2

2
1

20

ttttttttQ
TTTTT

t   

 
1817161514131211109 2474506489770456313 tttttttttt    

 
28272625242322212019 81081227219423514 tttttttttt    

 )3433 3332313029 ttttt  . 

)1( 76532]7[

6,3 9

5

ttttttQ
T
t  . 
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)221( 111097654]7[

5,3 951

9

ttttttttQ
TTT

t  . 

98765432]7[

4,3 255226241(
95

2
21

12

tttttttttQ
TTTT

t  )342 13121110 tttt  . 

98765432]7[

3,3 161133321471051(
9

2
5

2
2

2
1

14

tttttttttQ
TTTT

t    

 )453310912329 19181716151413121110 tttttttttt  . 

98765432]7[

2,3 495220231771361(2
9

2
52

2
1

16

tttttttttQ
TTTT

t    

 
181716151413121110 10283230403831105 ttttttttt    

 )3552432 272625242322212019 ttttttttt  . 

8765432]7[

1,3 421293416151871(
14

2
952

2
1

18

ttttttttQ
TTTTT

t    

  1817161514131211109 4118274324311138123 tttttttttt   

  28272625242322212019 81125206292722726 tttttttttt   

 )3433810 35343332313029 ttttttt  . 

)21( 87652]7[

6,4 9

4

ttttttQ
T
t  . 

)222232431( 121110876543]7[

5,4 951

7

ttttttttttQ
TTT

t  . 

1098765432]7[

4,4 47102712715482(
95

2
21

10

ttttttttttQ
TTTT

t  )352 14131211 tttt  . 

98765432]7[

3,4 44155924241941(
9

2
5

2
2

2
1

12

tttttttttQ
TTTT

t    

 
181716151413121110 2613821531635 ttttttttt  )45 212019 ttt  . 

98765432]7[

2,4 3433703412241161(2
9

2
52

2
1

14

tttttttttQ
TTTT

t    

 
19181716151413121110 72035486652691535194 tttttttttt    

 )355243810 29282726252423222120 tttttttttt  . 

98765432]7[

1,4 3620111235411571(
14

2
952

2
1

16

tttttttttQ
TTTTT

t    

  19181716151413121110 854774313383130944026 tttttttttt   

 
3029282726252423222120 8112417622141516920 ttttttttttt    

 )3433810 37363534333231 ttttttt  . 

1

5]7[

5,5 T
tQ  . 

21

7]7[

4,5 TT
tQ  . 

)1( 2]7[

3,5 52

9

tQ
TT

t  . 

)221( 765432]7[

2,5 95

11

tttttttQ
TT

t  . 

)424534221( 14131211109876432]7[

1,5 149

13

tttttttttttttQ
TT

t  . 

Now we have the system for irreducible words (of Lemma 4) of 12 equations and the same number of variables 
]7[

P : 

)(
141

]7[
61]7[

1 TT

P
tP


 . 

))(1(
14

]7[
61]7[

2 T

P
ttP


 . 

))(1(
14

]7[
61432]7[

3 T

P
ttttP


 . 

))(12(
14

]7[
6125678]7[

4 T

P
tttttttP


 . 
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))(222221(
14

]7[
611312111095432]7[

5 T

P
tttttttttttP


 . 

tPtPP  ]7[

65

]7[

6

]7[

6 . 

)1( ]7[

6

]6[

54321

]7[

54321 PPP  . 

))(331(
14

]7[
6198765435]7[

54321 T

P
tttttttttP


 . 

))(32221(
14

]7[
611098754324]7[

5432 T

P
ttttttttttP


 . 

))(221(
14

]7[
61111098654323]7[

543 T

P
tttttttttttP


 . 

))(21(
14

]7[
6112111097654322]7[

54 T

P
ttttttttttttP


 . 

]7[

654

]7[

4,1

3]7[

6543

]7[

3,1

4]7[

65432

]7[

2,1

5]7[

654321

]7[

1,1

6]7[

54321

]7[

654321 PQtPQtPQtPQttPP  
]7[

6

]7[

6,1

1]7[

65

]7[

5,1

2 PQtPQt   . 

]7[

654

]7[

4,2

3]7[

6543

]7[

3,2

4]7[

65432

]7[

2,2

5]7[

654321

]7[

1,2

6]7[

5432

]7[

65432 PQtPQtPQtPQttPP  
]7[

6

]7[

6,2

1]7[

65

]7[

5,2

2 PQtPQt    

]7[

654

]7[

4,3

3]7[

6543

]7[

3,3

4]7[

65432

]7[

2,3

5]7[

654321

]7[

1,3

6]7[

543

]7[

6543 PQtPQtPQtPQttPP   ]7[

6

]7[

6,3

1]7[

65

]7[

5,3

2 PQtPQt   . 

]7[

654

]7[

4,4

3]7[

6543

]7[

3,4

4]7[

65432

]7[

2,4

5]7[

654321

]7[

1,4

6]7[

54

]7[

654 PQtPQtPQtPQttPP    
]7[

6

]7[

6,4

1]7[

65

]7[

5,4

2 PQtPQt   . 

]7[

654

]7[

4,

3]7[

6543

]7[

3,

4]7[

65432

]7[

2,

5]7[

654321

]7[

1,

6]7[

5

]7[

65 PQtPQtPQtPQttPP 













  ]7[

6

]7[

6,

1]7[

65

]7[

5,

2 PQtPQt 





  . 

 

Now solving this system for the variables the above equations simultaneously for the variables,  

1,2,3,4,5,6,65,654,6543,65432,654321,54,543,5432,54321;]7[ jPj  we get the following results: let 
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Substituting all the required values of the irreducible words we get the following Hilbert series of braid monoid 7MB  as: 
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Corollary 3. The growth rate of 7MB is approximately equal to 2.74. 

Proof. From the approximated partial fraction (again using Mapple) of 

 
)3224366551)(1(

1
20191817161514131211108765432 tttttttttttttttttttt 

  

we see that the term 
t7397.21

8136.8


from the above Hilbert Series has considerable coefficients in its expansion  

.)7397.2()7397.2(7397.218136.8 )( 3322  ttt  

Therefore the growth function 
k

ka )7397.2(8136.8]7[   and hence the growth rate of 7MB is approximately equal to 2.74. 

 

At the end we are giving two conjectures about the degree of a 

polynomial involved in the Hilbert series of 1nMB  and about 

the growth rate of braid monoid 1nMB . 

Conjecture 1: The degree of the polynomial (other than 

t1 ) in the denominator of the Hilbert series of 1nMB  is 

1
2

)1( nn
. 

Let kr be the growth rate of kMB , then we have the 

following growth rates: 6.13 r , ,08.24 r 39.25 r , 

6.26 r  and 74.27 r . The following graph shows the 

values of .kr  

 

 
Conjecture 2: The upper bound for the growth rate of the 

braid monoid 1nMB  is 3. 
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